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1 Introduction

The supercomputer Deep Blue was able to beat Garry Kasparov at chess in
1997 largely through massive computational power and exhaustive search. It
was obvious very early that such an approach would be extremely infeasible for
the Ants game. Each side in chess starts with 16 pieces; even if we could choose
any piece and move it to any of the 64 locations on the board, there would only
be 1,024 possible moves at each turn. By comparison, with the Ants game, we
have to decide each turn, for each ant, whether to not move it, or move it in one
of the four possible directions. So if the ants are spread apart on a map, away
from obstacles, we would surpass that number with only 5 ants: 55 = 3, 125.
With 20 ants, there would be 520 = 95, 367, 431, 640, 625 possible moves. It’s not
even feasible to evaluate all of our own bot’s possible moves, let alone evaluate
a search tree like a chess program. This wouldn’t even really be feasible to
evaluate separately for small groups of ants. Additionally, the bot has limited
information about the world, so even if this were computationally feasible, it
isn’t clear how we would evaluate positions or take into account enemy moves
and random food spawns. The goal of the competition seems to have been to
get contestants to design bots that approach the problem with some degree of
strategy, as a human would.

The game is a turn-based strategy game designed to favor aggressive bots.
The only way to score points is to raze an enemy hill. Bots gain two points
for each enemy hill they destroy. However, each bot loses one point if its hill is
destroyed. In order to get more ants, they need to gather food. For every piece
of food a bot gathers, it gets one new ant. Lastly, fighting is determined by an
algorithm such that whoever has more ants in an immediate area wins.

We ended up structuring our bot into four main parts. The highest priority
is sending ants to capture nearby enemy ants hills we can see, as this is how we
score and eliminate enemy players, so we do this first. Early versions of our bot
did this without regard to how well the hill is being defended. The next-highest
priority is collecting visible pieces of food, so we take our remaining ants and
move them towards nearby pieces of food. We then call a function that uses a
complex strategy to engage enemy ants in battle. This appears to be a relatively
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critical part of the code, looking at battles between highly-ranked bots; before
this was finished, the function was empty, and our bot did not respond to enemy
ants. After this, we call a function that uses the remaining ants to explore unseen
parts of the map; this actually requires some creativity. An earlier version of our
explore function was computationally intensive and tended to exhibit strange
oscillating behavior. It wasn’t immediately obvious that such a separation of
responsibilities would work well (as opposed to a more integrated approach),
but the final version of the code still has basically the same structure, although
the individual functions are more involved now. The final version of our code
has a three explore-related functions called, with the second one trying to move
ants in the general direction of enemy hills, and the third one a last resort effort
to find something interesting to do. We also added a function at the end to
move ants with nothing to do that would be obstructing our other ants.

In order to easily have multiple people working on the code at the same
time, it quickly became apparent we would need to utilize some sort of version
control. Having individuals editing the same file and then trying to share that
file resulted in much confusion. Often their changes were in vain because others
would make changes that broke the new features. To help rectify this, we chose
to use Git. Git is a non-linear, distributed version control system. Our git
server is hosted on James’ server, alpha.gekinzuku.com. This helped alleviate
the difficulties of collaboratively working on the project.

2 Architecture

Our code’s architecture can be thought of as a three layered onion. The top layer
is our Bot struct, which houses the power to decide which ants have what jobs,
such as food gatherer, explorer, “hill razer”, or fighter. To get the information
to make these decisions we must travel down into the State layer, which has
several important functions. Inside State reside the variables about the world
and world algorithms. We are able to set such variables by reading the files
that the game engine sends us, and then we have the ability to construct the
world. This is abstracted through the last layer, the core of our bot, which is a
stacked array with each element correlated to a specific row and column. The
elements in the array are Squares. The Square class encapsulates an unsigned
char, which is able to hold eight flags. From these flags we can describe any
spot on the map. With the addition of keeping track of who owns the Square,
we are able to describe any Square in fourteen different ways. Therefore, just by
analyzing this array we are able to determine whatever we want, such as where
food is or where enemy ants are threatening us.
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Bit Position Value
1 isThreatened
2 isFocused
3 isExplored
4 isFood
5 isAnt
6 isHill
7 isWater
8 isVisible

Additional Flags
isFriendlyHill
isEnemyHill
isFriendlyAnt
isEmpty
isMovingAnt

One last aspect that a Square keeps track of is how many ants have died in that
square and who they belonged to. Nowhere in our code do we use this; however,
it also was not a strain on any of our resources, and so we decided to keep it
around for sake that it might one day become useful. Overall though, we believe
that the Square class is extremely efficient with space and offers us anything we
would hope to know about the map. To keep the the Square array up-to-date is
the State’s responsibility. As soon as a turn starts, we read in the information
that the game engine sends us, putting the locations of enemy ants, enemy hills,
and food into vectors. We chose to use vectors, as they represent a contiguous
block of memory, which is efficient for random access, insertion and deletion at
the end, and iteration. In our code we use the locations of enemy ants, enemy
hills, and food only for iteration, and so a vector is a perfect fit. On the other
hand, we store our ants inside a list, so it has a O(1) insertion and deletion
anywhere inside of it. We chose a list because if an algorithm wanted an ant
only for itself, it could remove it efficiently and continue on without a slowdown.
Besides those variables, State keeps track of a few distance algorithms, so when
we want an estimate from one square to the next, we can call one of them. Then
when Bot has decided that it wants to send an ant to a certain position, it calls
State, which then sends the information to the game engine.

Not applicable to the onion analogy but nonetheless integral to our code are
a few other classes and structs. One of them is the Location struct, which keeps
track of the row and col, which is used throughout, and so we ended up writing
an overloaded equality operator. Next is the Ant struct and is used to track
just our ants. Basically it is a wrapper struct around a boolean flag saying if it’s
busy and its current position. The last of our structs is the Route struct, which
holds an ant, where it wants to go, and the distance between them. There were
a couple structs from the starter package that we didn’t even need to touch or
look at. They were the Timer struct which returned how long it has been since
the start of our turn and the Bug struct which we used as a logging tool.

The latest addition to our code and by far one of the most influential is
the Map class, which was born out of the necessity to cache distances between
Squares. Before this class we used a four dimensional array to track every
distance from each square to all the other squares. This soon became a problem
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as illustrated below.

Max row size = 200

Max column size = 200

Array size = (200 · 200)2

Array of short integers = 2 · (200 · 200)2 ≈ 3.2 GB

Since 3.2 GB exceeds the 1 GB we are given, this method simply doesn’t work.
The idea with the Map class is to only keep track of distances from what we
deemed important Squares (i.e., Squares that had food or was an enemy hill).
When we read in the information we would see if we detected new food, and
if we had, create a new Map, else if the food disappeared, delete that specific
Map. When a map was created it would start from goal square and then work
outward in a breadth first fashion establishing distances to all the explored
squares with respect to obstacles. It also kept track of something we called
“degrees of freedom” for each Square. Basically it was how much wiggle room
that square had and still be able to reach the goal. The freedom of a square is
calculated as follows:

n = number of squares available to go to

m = minimum freedom of adjacent squares

Freedom = n+m− 1

Once these arrays were filled, we were able to call upon Map to see what the
best move would be to advance ourselves to the goal. The best move is the
neighbor that resulted in the lowest distance but also the highest freedom. If in
the following turns we see a previously unexplored square, we pass that location
into all of our Maps, which then update distances and freedoms accordingly. The
Map class is used extensively in our bot as it gives us the potential to query our
ants against it to see what ant is the closest and then it will determine the best
move for us. This class is in large part why have succeeded today.

3 Distance algorithms

The bot’s main parts rely on several algorithms to perform their computations.
One important building block is how to estimate and compute distances. There
are three traits about how the AI challenge is structured that makes the estima-
tion of distances non-trivial. First the edges are wrapped. This means that ants
can travel to the edge of the map and appear on the other side. This in effect
forces a calculation of two distances, as it could be faster for an ant to wrap
rows and/or columns. Next comes the fact that ants can’t travel in a straight
line to and from locations diagonally apart from each other. They are forced to
either go North, East, South, West each turn. But the biggest factor that can
cause a misjudgement is water. An ant could be two squares away from food,
but in between them could be a wall of water that will make any computation
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that takes into account only the starting and ending location give a gross un-
derestimate. Therefore we have used three formulas throughout development:
the Euclidean distance, the taxicab or Manhattan distance, and a custom one
based on the Bresenham line-drawing algorithm. Each of the listed formulas
have strengths and weaknesses, which makes each useful for different purposes.

The Euclidean distance in a two dimensional plane is the straight line dis-
tance between two points, which makes it not useful at estimating distances for
all but pairs of points that lay on the same axis. However, it comes into use
when dealing with updating map information, such as what an ant can see or
what squares are threatened by enemy ants as they are certain radius away.
Using the Euclidean distance allows us to set these flags correctly. The taxicab
distance will return how many squares two locations are from each other if one
cannot traverse a diagonal. This metric is attractive to use as it outputs how
many turns it will take to reach the goal. The two formulas are illustrated below
and take into account row and column wrapping.

Distance between points P and Q

D1 = |Prow −Qrow| , D2 = |Pcol −Qcol|

∆Rows = min(D1,Rows−D1)

∆Cols = min(D2,Cols−D2)

Euclidean distance =
√

(∆Rows)2 + (∆Cols)2

Taxicab distance = ∆Rows +∆Cols

To give a concrete example about how these two formulas differ, image two
points (0, 0) and (3, 4). The Euclidean distance will return five and taxicab will
return seven. The question might be posed, why would we ever use Euclidean
over taxicab when calculating the distance between an ant and its goal? Imagine
ants at (0, 0) and (3, 11) with the goal still being at (3, 4). Both ants will need
to take at least seven turns to reach the goal. The key difference is when there
is an obstacle in the way. The ant going south from (3, 11) will need to add at
least two more moves to reach the goal as it has circumnavigate the obstacle.
On the other hand, the ant from (0, 0) has the option of going North or East, so
the obstacle will be of minimal hindrance. In this instance we would prefer using
the Euclidean distance. Yet if we moved the starting positions of one of the ants
from (3, 11) to (3, 10) and removed the obstacle, it will only require six turns to
reach the goal, whereas the other ant still needs seven. The Euclidean distance
will still say the ant at (0, 0) is closer to the goal, which is wrong. Therefore the
accuracy of the Euclidean and taxicab distance functions vary depending on the
situation, and there are situations where we could plausibly consider using the
Euclidean distance for distance estimation.

The third distance algorithm, which is quite different from the Euclidean
or taxicab, is the Bresenham. The original algorithm described by the author,
J. E. Bresenham, is “given for computer control of a digital plotter.” While it
was created for plotting the best fit line between two points, it can easily be
manipulated to return the distance between two points with respect to obstacles.
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This is achieved through Bresenham’s most distinguishing feature: traversal of
each square along the desired path. The start and end points can be thought
of lying on a line created by a linear equation of the form

y = mx+ b

With algebraic manipulation the linear equation becomes

0 = (∆y)x − (∆x)y + (∆x)b

When a square’s coordinates are plugged into the equation and outputs a zero,
then that square lies along the best fit line. Since this algorithm allows us
to see what squares lie along the path, we can account for obstacles. If the
current square that we are evaluating is water, get the number of adjacent water
locations and then add two, and that is the estimate to maneuver around that
particular square. Of course, if there are no obstacles in the way, the Bresenham
will return the same value as the taxicab.

It may then be surprising to hear that in the current state of our code we
do not use the Bresenham anymore. This is largely due to performance issues
we did not foresee, and also because the algorithm’s occasional distance over-
estimation limits its usefulness for pathfinding. We did not anticipate perfor-
mance issues, as Bresenham wrote, “the algorithm may be programmed without
multiplication or division instructions and is efficient with respect to speed or
execution and memory utilization.” These issues are probably a result of the
sheer number of times the function was getting called from other algorithms
coupled with a less-than-efficient implementation. The checking of how many
adjacent water locations there are and getting the next location probably cause
some of the slowdown; the algorithm is not inherently slow, however, as with
some slight modifications, “it is capable of drawing lines at a rate of 2.2 million
pixels per second on a 486/33,” technology from the early 1990’s.

Even if we could fix it to avoid performance problems, it’s still flawed so as
to be unusable. Experiments showed that it overestimates the actual distance
in about 1% of cases. This situation would only arise when one of our ants
wants to take a diagonal path to its goal and along the line of best fit is one
square of water. The Bresenham will add two onto the total distance, whereas
realistically the ant can still get to its goal in the same number of turns as if
the obstacle was not there because on a diagonal there are generally two moves
that brings an ant closer to the goal. With this possibility of an overestimation,
it cannot be used as an admissible heuristic in search algorithms. In the end
we settled on using Euclidean for updating map information dealing with radii,
taxicab for estimation, and we learned that Bresenham should be left to what
it does best: drawing pixels.

4 A* search

While many of the computations we’d ideally like to do for the Ants game are
computationally infeasible, optimal pathfinding is, fortunately, very practical.
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The simplest way to do this is to start at the start square and begin searching
each neighboring square, essentially keeping a list of the shortest known paths
to each square, and the previous square so the path can be reconstructed. We
can set this search up to be breadth-first and expand nodes in the search tree
with the shortest paths first, so that all paths are found in order of length, and
if a path to a new square is found, it must be optimal.

Breadth-first search works well if one wants to calculate the distance between
one point and every other square on the graph, e.g. to find the closest ant to a
piece of food. If we only want to find one path though, it requires searching more
nodes than is necessary. A* search improves on breadth-first search by using
a heuristic to estimate the remaining cost from each node to the destination
node. Similarly to how breadth-first search expands nodes in order of total
path distance so far, A* expands them in order of the sum of total distance
so far and an estimate of the remaining path distance to the destination. If
we have a heuristic that never overestimates the total remaining distance (an
“admissible” heuristic), A* is still searching the shortest possible paths first and
the result is still guaranteed to be optimal. Our A* algorithm uses the taxicab
distance as an admissible heuristic. This essentially causes the search algorithm
to search paths that move directly towards the goal before trying to find paths
that maneuver around obstacles. The taxicab distance is a very good estimate
when there are few obstacles on the path; on very twisty, maze-like paths, it
underestimates quite a bit and the algorithm has to search more nodes.

While A* works very well for finding the optimal path between the ant
and the food, it still wasn’t quite fast enough to call it as many times as we
wanted. Although it’s guaranteed to return an optimal path when given an
admissible heuristic like the taxicab distance, we experimented with using the
non-admissible Bresenham function because it appeared to fix some situations
where an ant would get stuck trying to decide between multiple pieces of food
because the next step of the found path takes it closer to a different piece of
food according to the estimation metric. However, as mentioned above, the
Bresenham function turned out to not be fast enough to be used as a heuristic
in A* search. As the number of ants increased, this became a very large problem.
So we decided to use taxicab distance as a heuristic instead.

Once we had fixed that problem, we had some computational time to spare
and tried using A* to find the path between each food and every ant. This
appeared to work on small maps but sometimes has problems on large maps or
with large numbers of ants, in which case A* would try to explore more nodes
than we had time for. The search tree is deeper for longer distances, making
it computationally costly. We tried to optimize it by only letting ants within a
certain distance (estimated by using taxicab distance) run A*. In spite of this,
the code still sometimes timed out in larger maps, although profiling suggested
that at least part of the problem might have been due to the explore func-
tion. We ended up developing alternative approaches instead of investigating
the problems further.

The solution was to use the Map class. We isolated where we were calling
A* search, and it was when we were going to food or going to hills. We decided
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to create Maps to these important squares as a Map has all the distances from
all the squares already calculated using breadth-first search. This alleviated the
need for an algorithm to calculate distances, and when we did find an ant closest
to the goal square, we simply called Maps give us the best move.

5 Priority queue

Knowing what the next best move can hold substantial rewards if it can be
implemented correctly. Our thought here was to create a data structure that
allowed us to hold all possible combinations of the distances between ants and
possible goals. The best move would be the ant that is closest to a particular
goal. Since we know how many combinations there are (number of ants · number
of goals), the straightforward solution would be to create an array to hold all the
distances, populate the array, and then use a sorting algorithm. We could then
iterate through it finding all the best moves. In hindsight this may have been the
most efficient method; however, we decided to go with std::priority queue,
mainly because of its ease of use. All we needed to do was instantiate it with a
comparison class for Routes, push all the combinations, and pop them back out.
Extremely easy, but, again, may have not been the best decision. The default
underlying container in a priority queue is the vector, which is known for its
random access but every time a Route is pushed onto the queue, rearrangement
of elements may be necessary. Even with a heap implementation, the aforemen-
tioned method of using an array is more efficient in the aspect that we know
how many elements the array will hold and we know when we are done adding
elements so we can sort it just once. Ultimately, the priority queue did not seem
to be causing a bottleneck, so its usability outweighed the performance cost.

6 Battle resolution

Battle strategies are one of the most important aspects of the game. Our ob-
jective is to raze hills, and there is no way to do so unless we first kill the ants
that defend it. Also, while growing our army, we should be killing enemy ants
with the minimum casualties possible. How do we do so though?

First we have to understand how battles work. Each ant that is attacked
is assigned a number equal to the enemy ants within its attack radius. Then
each ant survives only if all the enemy ants attacking it have larger numbers
assigned to them. This makes predicting results of battles without knowing the
placement of every ant very complicated, because one enemy ant having the
same number as one of ours, while we “thought” it to be higher, can result in
our ant dying.

The first problem we have in making out battle strategies efficient is finding
which ants are fighting together, so that we don’t have to account for ants that
are insignificant to our calculations. The best way we were able to think of is to
find the first enemy ant that has the ability to attack one ant of our own, assume
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both of them move towards each other, and add it to a vector, enemySquad.
Then find all ants of our own that can be attacked by that ant and add them
to mySquad. Then find the ants that can be attacked by the ants in mySquad
and add them to enemySquad, and so forth, until there are no new additions to
be made. This ensures that all ants that should be accounted for are, while no
extra ants are included in our calculations slowing us down.

Then how do we figure out our moves? Should we try to calculate every
move that every ant in the fight can make? Should we do so for multiple turns
for best results? Some basic calculations immediately rule out calculating every
possible move, as this would time out extremely easily. We therefore have to
find some way to ignore some of the moves that can possibly be made, to speed
it up. To do so we came up with the following rules. First of all, for every
ant in our squad, if it has a number n assigned to it, it means that n enemy
ants will have their numbers increased by 1 because of it. Therefore, the sum
of all the assigned numbers to our ants must equal the number of the enemy
ants. That is of course assuming that there is only one opponent attacking
our ants at a point of time. Fighting two or more opponents simultaneously
happens extremely rarely and is something that we can overlook. So we should
try to have more ants than our opponent does. Still, the only way to do so that
initially came to mind was to calculate every move we could make, and see what
the result could be, which is not an improvement at all.

Then we realized that there was a way to ignore most moves: our opponent’s
ants can only move towards us, stay still or retreat. First of all, if they retreat
there is either not a battle, or, if only some of them retreat, we will have more
ants engaging, which is our goal. So the only two cases for which we have to
account for are the enemy ants staying still, or moving towards us. If they stay
still, we do not have to calculate anything for them, because we know their exact
positions, but if they move it seems that we still have to. Assuming though that
the enemy ants are forming a squad that is only on one side of our ants, that
is, our ants are in a somewhat close formation, the enemy ants can make one
or two moves to approach us. These moves though lead to very similar results.
If there are two moves for each ant to approach us, it means that our ants are
diagonally to them. In such a case, they will have probably formed a diagonal
wall. Let’s assume that we are to their northwest. For every one of the ants
moving north, there will be one ant that can’t move west because of it, and vice
versa. So if they all want to approach us they all have to move north, or west.
The difference between each radius is virtually only one square to us, which is
a very minor difference. So we can treat all squares the enemy ants can go to
as the same for our calculations and call them threatened squares.

Now that we have found which ants are engaging, and we have found a
way to ignore the number of the enemy moves for our calculations, we have
to determine which exact squares are going to be considered threatened. The
first idea was to treat as threatened all squares that are directly outside of the
enemy’s attack radius. But if there is water blocking one or more of the enemy
ant’s moves then it’s actually threatened squares are less, and we should account
for this fact. So we have to check and see every move the enemy ant can make,
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and assign threatened squares according to those.
Afterwards we find and store in an array of vectors how many and which

ants are attacking each of our ants for every move our ant can make, and how
many can attack it next round for every move it can make. This is done so that
we don’t have to calculate these every time while trying to identify our moves,
effectively speeding up our program.

Next we’ll present the basic algorithm that is used to find out the best moves
for each ant. For each and every ant we either assume it will retreat, not finding
its move, or we will find all moves that lead to a “desired square,” and then go
to the next ant until we’ve determined what all ants will do. For each ant, if
it moves to a desired square we increment a counter by one, and for every new
enemy that it includes in the battle, we decrease it by one. After we’ve found
all moves the counter is greater than the maximum, these moves are copied to
a vector, bestMoves.

This above algorithm is called multiple times, as we have to be sure that
we can outnumber our enemies both if they stay still and if they move towards
us. So first we call it for desired squares being the ones that are being attacked
right now, and then if can lead to a maximum that is greater than zero we also
call it for the desired squares being those that can be attacked next turn. If the
maximum is still greater than zero we make these moves. If we didn’t find any
moves that are valid, then we call this algorithm again for desired squares being
those that are threatened.

What the above effectively does is, we can be very aggressive, moving our
ants directly attacking the enemy ants, we do so, else we try at least making
sure that if the enemy ants proceed, they will lose. If we cannot even do that,
then we have to retreat.

Now let us make small specifications about the above. First of all, the
algorithm above works recursively, calling itself for every next ant. Also it
prioritizes solutions that have the least amount of our ants engaging for the same
value of the maximum. More specifically, if we can chose between attacking four
ants with five, or attacking one ant with two, then we will chose the second one,
as the ratio of ants is greater.

This algorithm seems to work very well in the amount of time we have,
only crashing for immense battles with more than 20 ants on each side, which
happens extremely rarely. It is also timed so that if that is going to happen we
just make the best moves without trying to improve on them. So far the battle
strategies seem to be working very well, not having problems against bots that
are ranked even better than ten, which is impressive.

7 Exploration

For the first version of the explore function, we thought that iterative deepening
depth-first search would be an efficient method to find the closest not visible
Square. Thus, this would allow us to more effectively spread around our ants all
across the entire map, which has many advantages for us, including knowledge

10



of the map, food locations, hills, and enemies. The reason that we first chose
iterative deepening was because it performs a depth first search while traversing
through the nodes on the same depth in breath-first method. If the solution
was not found at the depth, the depth is increased and it starts over. Therefore,
iterative deepening is complete in the fact that it allows us to find a solution
if a solution exists. If we consider the branching factor, or number of possible
paths from each square, as b, and we know that the closest solution will be a
depth of d away, we can formulate iterative deepening a bit better:

Time complexity = O(bd)

Space complexity = O(bd)

With the AI competition, neither the branching factor nor the depth is constant.
This is because as iterative deepening expands out, it remembers the nodes it
visited. The first branch has four unvisited nodes and then followed by several
three branches until the majority of nodes have only two branches that haven’t
been visited. The most volatile variable is the depth of the solution. If an ant
is in the middle of nowhere we know that it would have to travel one square
outside its view radius, so the depth would it be approximately one plus the
square root of 77. Needless to say, as more ants populate the map, iterative
deepening will have to expand increasingly more squares to find that one that
is not visible, and this became a problem. We would have many of our ants
wanting to travel all the way across the map to find that one square that is
not visible. Then once we found the spot, we called the A* search function.
Having two expensive algorithms called for each ant ended up being a recipe for
disaster. In the end we ended up scrapping this algorithm, but we could have
improved it drastically by remembering our initial direction when we started
iterative deepening.

The current explore function is more complex, but is simple if one looks at
it in a series of steps. We start by looking at all our exploring ants and seeing if
they are threatened by an enemy ant. If so, find a neighboring square that is not
threatened and can be moved to. If a neighbor square was found, move to the
next exploring ant. At this point we know that either the ant isn’t threatened
or it can’t move out the threatened zone. So we create a queue that will house
Locations, and then we do a breadth first search until we either find a good
battle location, an unexplored square, or we’re more than 18 squares away from
the ant. If that ant still can’t find something to do, it sees which one of its
neighbor has the most unseen squares in their radius. If all the neighbors have
no squares that are unseen we do a breadth first search up to 50 squares away
looking for a battle position or an unexplored square. The next explore function
that comes later essentially has the algorithm just mentioned except that it goes
out to a distance of 250 squares away, in a last-ditch effort to find something
productive to do. If this function fails, we make sure said ant is out of the way
of other ants.
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8 Debugging

Frustratingly, programmers usually can’t completely understand what their code
is going to do, and as a result, all but the very simplest programs contain bugs.
As such, a lot of time was spent debugging. We utilized a variety of methods
for this purpose. We used profiling to diagnose timeout issues, and spent a lot
of time digging through our debug log to find logic errors and bugs that cause
the program to crash.

The profiler is a tool that repeatedly records which functions are running
(we used Mac OS X’s Instruments, which has a default of once per millisecond)
and calculates how much CPU time each of them is using. One of the unique
aspects profiling allowed us to see was that it revealed bottlenecks where we
wouldn’t expect them. A prime example of this std::endl, which is a function
of std::ostream that inserts a new-line character and then flushes the buffer.
This means that these two statements are equivalent:

std::cout << std::endl;

std::cout << ‘\n’ << std::flush;

The difference between inserting a new-line character and std::endl is small
but critical. The time to flush the buffer when writing a few lines is relatively
costless. However, when it is possible for 600,000 lines of debug information to
be written in under a few seconds, it becomes inherently slow. Flushing the
buffer numerous times soon became a timeout catalyst, as the profiler found
that std::flush was taking up 36% of the CPU time. The fix is simple: replace
all occurrences of std::endl with ‘\n’. This solved our flushing the buffer
timeout, but another problem took its place. When the buffer is flushed, it
“synchronizes the buffer associated with the stream to its controlled output
sequence. This effectively means that all unwritten characters in the buffer are
written to its controlled output sequence as soon as possible.” Thus, flushing
the buffer guarantees that if the bot crashes, the last line in the debug file is
also the last insertion, making it somewhat easy to find where and why our bot
crashed. With only using the new-line character, we could only guess why our
bot crashed, as the last line in the debug file could be from the turn before.
Therefore to resolve this issue, it is key to find a balance between knowing when
to flush the buffer and when to use the new-line character.

9 Possible improvements

There are known structural weak points in our code that could be improved.
The two biggest offenders are State and Bot. They are large, have too many
responsibilities, and the distinction between them is blurred. Enclosed by these
two classes are 1731 lines of code, comprising nearly 60% of all our code. We
suspect that through simply deleting functions not used anymore and extracting
common code into separate functions we could cut down the lines of code down
to around 1000. The problem still remains that State and Bot have too many
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responsibilities. Having too many responsibilities will make a class more sus-
ceptible to change, and thus prone to errors. It would be worthwhile for us split
Bot and State into more maintainable pieces of code. Having these pieces in
different files would allow to work more concurrently without the fear of having
problems when we tried to merge our code. The structure we put together for
this competition is acceptable for the six week period that we had to compete,
but if we were to work on this code any longer, a major rewrite would be in
order. If we were to do a rewrite, we probably would set up a coding standard.
For example, when initializing and filling an array you will find in our code
malloc, memset, new, and std::fill. This intermixing of C code in C++ code
can oftentimes be confusing, and so we should decide what standard to use.

Architecturally, the computer scientists Brian Foote and Joseph Yoder would
describe our code as a Big Ball of Mud, which “is a haphazardly structured,
sprawling, sloppy, duct-tape-and-baling-wire, spaghetti-code jungle.” From the
beginning there was never a discussion on how our code should be structured,
and we instead slapped code onto the starter bot package and figured out what
this affected. This lack of discussion most likely stemmed from the fact that
none of us knew what our final code should look like or what types of algorithms
we would use. The result was trial and error. Someone would stumble across a
new algorithm or have an idea and implement where ever they saw fit. Whether
the code change did improve our bot or not, needless code was not deleted, as
old algorithms were kept around or the new code changes weren’t removed when
they didn’t work. As can be imagined, when this happened to multiple people
and code was shared, no one knew exactly what functions were needed, and the
result can still be seen today. For instance, scattered throughout our code are
predicate classes no longer used, the Bresenham distance algorithm, A* search,
and exploration implemented as an iterative deepening search. (One reason
why we left these in the code is that we presented on some of these ideas to the
regular ENGR151 class, and if our code was going to be shared with them, we
wanted them to see how such algorithms worked). The most beneficial action
would be for us to rewrite our bot from scratch, which would promote better
understanding of our existing code, but more importantly we would be able to
construct a structure that was more intuitive and easier to maintain.

10 Conclusion

Overall, we are extremely grateful for the opportunity we were given, as we were
able to forgo regular assignments as well as tests to pursue perfection. With
this time, we were able to code and debug a bot that can compete with the best
in the world. Our collegiate rivals, the Spartans, are soundly beaten, as we, a
team of freshmen, were able to defeat a team of their post-doctorates. To thank
for this time and for giving us advice along the way is Professor Atkins. Also to
thank is Jessica Horowitz, who would put in the long hours, oftentimes without
sleep, to make sure that she had something new to teach us in the morning.
Without them we wouldn’t have been exposed to knowledge or the resources
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that gave us the ability to be in the top 25 in the world. If such an opportunity
arose again, we would be more than happy to answer the call.
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